

Data Sheet

July 1999

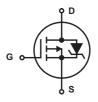
File Number 2221.4

12A, 100V, 0.300 Ohm, P-Channel Power MOSFETs

These are P-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. The high input impedance allows these types to be operated directly from integrated circuits.

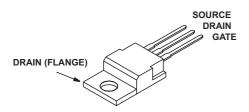
Formerly developmental type TA17511.

Ordering Information

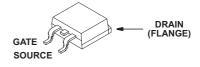

PART NUMBER	PACKAGE	BRAND
IRF9530	TO-220AB	IRF9530
RF1S9530SM	TO-263AB	RF1S9530

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in the tape and reel, i.e., RF1S9530SM9A.

Features


- 12A, 100V
- $r_{DS(ON)} = 0.300\Omega$
- · Single Pulse Avalanche Energy Rated
- · SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- · Linear Transfer Characteristics
- · High Input Impedance
- · Related Literature
 - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol



Packaging

JEDEC TO-220AB

JEDEC TO-263A

IRF9530, RF1S9530SM

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	IRF9530,	
	RF1S9530SM	UNITS
Drain to Source Breakdown Voltage (Note 1)	-100	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1)	-100	V
Continuous Drain Current	-12	Α
$T_C = 100^{\circ}C$	-7.5	Α
Pulsed Drain Current (Note 3)	-48	Α
Gate to Source VoltageV _{GS}	±20	V
Maximum Power DissipationPD	75	W
Dissipation Derating Factor	0.6	W/oC
Single Pulse Avalanche Energy Rating (Note 4)	500	mJ
Operating and Storage Temperature	-55 to 150	οС
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°С
Package Body for 10s, See Techbrief 334	260	°С

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

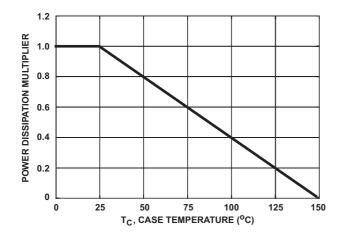
1. $T_J = 25^{\circ}C$ to $T_J = 125^{\circ}C$.

$\textbf{Electrical Specifications} \hspace{0.3cm} \textbf{T}_{C} = 25^{o}\text{C, Unless Otherwise Specified}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = -250\mu A$, $V_{GS} = 0V$, (Figure 10)	-100	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \mu A$	-2	-	-4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V	-	-	-25	μΑ
		V_{DS} = 0.8 x Rated BV _{DSS} , V_{GS} = 0V, T_{C} = 125°C	-	-	-250	μΑ
On-State Drain Current (Note 2)	I _{D(ON)}	$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}$, $V_{GS} = -10V$, (Figure 7)	-12	-	-	А
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$	-	-	±100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = -6.5A, V _{GS} = -10V, (Figures 8, 9)	-	0.250	0.300	Ω
Forward Transconductance (Note 2)	9fs	$V_{DS} > I_{D(ON)} \times r_{DS(ON)} Max$, $I_{D} = -6.5A$ (Figure 12)	2	3.8	-	S
Turn-On Delay Time	t _{d(ON)}	$V_{DD} = 50V, I_{D} \approx -12A, R_{G} = 50\Omega, V_{GS} = 10V$	-	30	60	ns
Rise Time	t _r	$R_L = 4.2Ω$, (Figures 17, 18)	-	70	140	ns
Turn-Off Delay Time	t _{d(off)}	MOSFET Switching Times are Essentially Independent of Operating Temperature	-	70	140	ns
Fall Time	t _f	pendent of Operating Temperature		70	140	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	V _{GS} = -10V, I _D = -12A, V _{DSS} = 0.8 x Rated BV _{DSS} , (Figure 14, 19, 20) Gate Charge	-	25	45	nC
Gate to Source Charge	Q _{gs}	is Essentially Independent of Operating Temperature		13	-	nC
Gate to Drain ("Miller") Charge	Q _{gd}			12	-	nC
Input Capacitance	C _{ISS}	V _{DS} = -25V, V _{GS} = 0V, f = 1MHz, (Figure 11)	-	500	-	pF
Output Capacitance	Coss		-	300	-	pF
Reverse Transfer Capacitance	C _{RSS}		-	100	-	pF
Internal Drain Inductance	L _D	Measured From the Contact Screw On Tab To Center of Die Modified MOSFET Symbol Showing the Internal Devices	-	3.5	-	nH
		Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die	-	4.5	-	nH
Internal Source Inductance	Ls	Measured From The Source Lead, 6mm (0.25in) From Header to Source Bonding Pad	-	7.5	-	nH
Thermal Resistance Junction to Case	$R_{\theta JC}$		-	-	1.67	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	Typical Socket Mount	-	-	62.5	°C/W

IRF9530, RF1S9530SM

Source to Drain Diode Specifications


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET	-	-	-12	А
Pulse Source to Drain Current (Note 2)	^I SDM	Symbol Showing the Integral Reverse P-N Junction Diode	-	-	-48	A
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = -12A$, $V_{GS} = 0V$, (Figure 13)	-	-	-1.5	V
Reverse Recovery Time	t _{rr}	$T_J = 150^{\circ}C$, $I_{SD} = -12A$, $dI_{SD}/dt = 100A/\mu s$	-	300	-	ns
Reverse Recovery Charge	Q _{RR}	$T_J = 150^{\circ}$ C, $I_{SD} = -12$ A, $dI_{SD}/dt = 100$ A/ μ s	-	1.8	-	μC

-12.0

NOTES:

- 2. Pulse test: pulse width $\leq 300 \mu s,$ duty cycle $\leq 2\%.$
- 3. Repetitive rating: pulse width limited by max junction temperature. See Transient Thermal Impedance curve (Figure 3).
- 4. V_{DD} = 25V, starting T_J = 25°C, L = 5.2mH, R_G = 25 Ω , peak I_{AS} = 12A. See Figures 15, 16.

Typical Performance Curves Unless Otherwise Specified

-9.6

-7.2

-4.8

-2.4

0

25

50

75

100

125

150

T_C, CASE TEMPERATURE (°C)

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

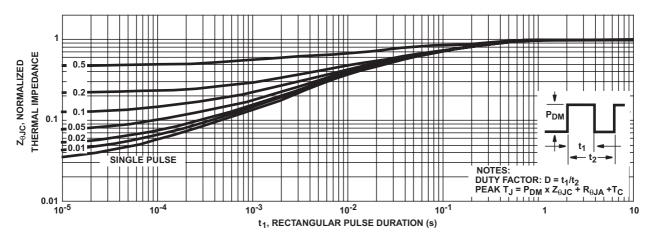


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

Typical Performance Curves Unless Otherwise Specified (Continued)

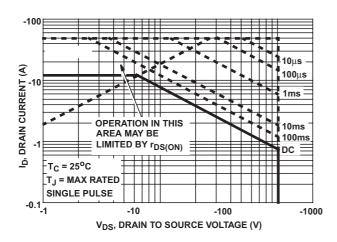


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

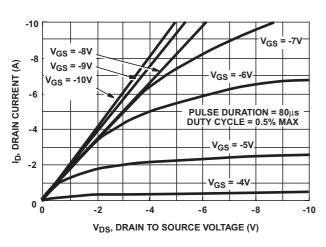
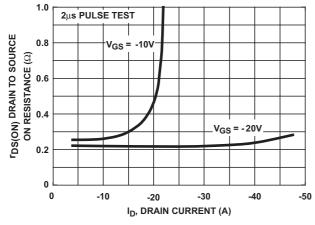



FIGURE 6. SATURATION CHARACTERISTICS

NOTE: Heating effect of 2µs pulse is minimal.

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

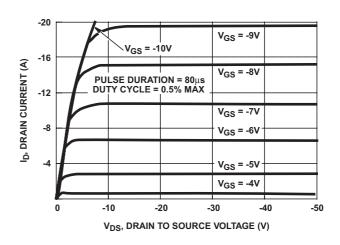


FIGURE 5. OUTPUT CHARACTERISTICS

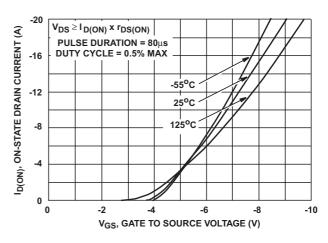


FIGURE 7. TRANSFER CHARACTERISTICS

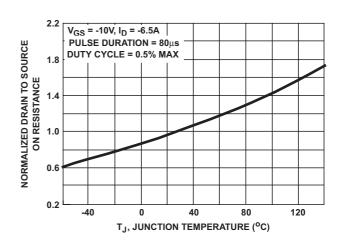


FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

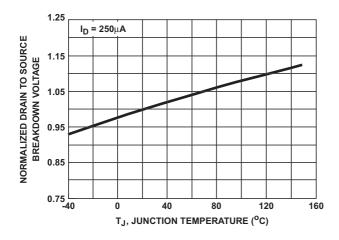


FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

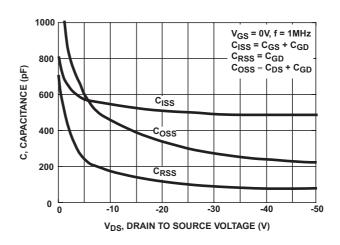


FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

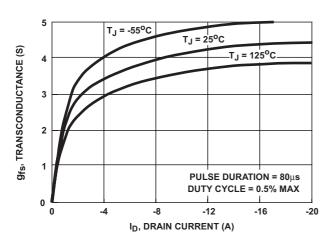


FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

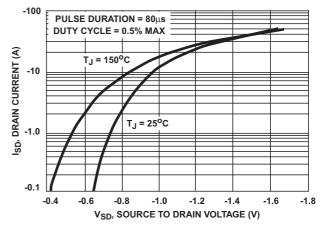


FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

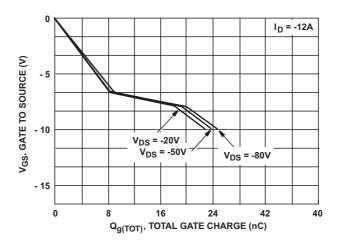


FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

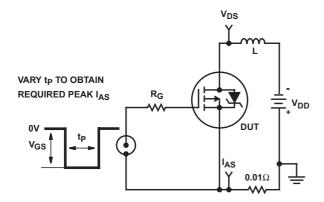


FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

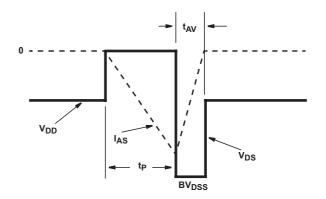


FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

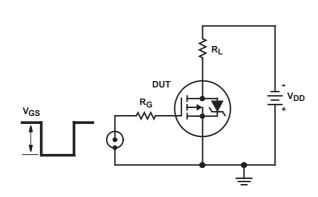


FIGURE 17. SWITCHING TIME TEST CIRCUIT

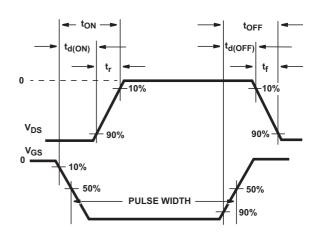


FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

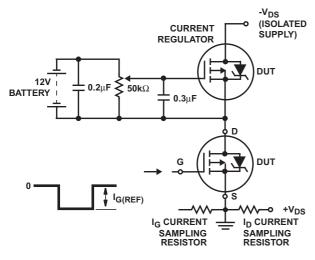


FIGURE 19. GATE CHARGE TEST CIRCUIT

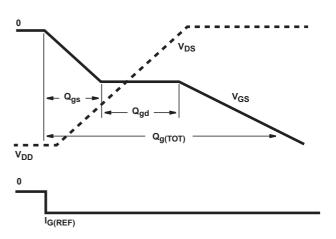


FIGURE 20. GATE CHARGE WAVEFORMS

IRF9530, RF1S9530SM

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (407) 724-7000 FAX: (407) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan

Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029